ISSN: 2582-7219

International Journal of Multidisciplinary
Research in Science, Engineering and Technology

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Impact Factor: 8.206 Volume 8, Issue 10, October 2025

©2025 IJMRSET | Volume 8, Issue 10, October 2025| DOI:10.15680/IJMRSET.2025.0810003

INNUNHYELYEVPARE | www.ijmrset.com | Impact Factor: 8.206] ESTD Year: 2018|

£ i
," ‘-‘“’2},)

;x;é» N International Journal of Multidisciplinary Research in
gﬂ B L :

2 ‘LW Science, Engineering and Technology (IJMRSET)
IIMBSE (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Comparative Analysis of Data Structures and
Algorithms in C, Java, and Python

Mamatha M A!, Anish Kumar Gaurd? Bharath SR3

The Oxford College of Science, Bangalore, Karnataka, India'3

ABSTRACT: Data structures and algorithms are the foundation of effective software engineering. While C, Java, and
Python are all widely used, they offer distinct approaches due to their language philosophies, syntax, and core features.
This article explores fundamental differences, strengths, and weaknesses by comparing implementation, performance,
and usability for major structures—arrays, linked lists, stacks, queues, trees, and hash tables. Algorithmic trade-offs are
highlighted for sorting and searching, and practical usage insights guide academic and development best practices.

I. INTRODUCTION

Efficient use of data structures and algorithms is crucial for well-performing software. Comparing C, Java, and Python
opens insight into system control (C), modularity (Java), and rapid prototyping (Python), impacting memory, speed, and
software maintainability. This article provides code samples, complexity analysis, and practical commentary for each
language.

Language Overview
Language Pros Cons
C Speed, direct hardware access Manual memory/error management
Java OOP, cross-platform, rich libraries Verbosity, runtime overhead
Python Readability, flexible syntax Slower, less control over resources

II. COMPARATIVE DATA STRUCTURE IMPLEMENTATION

Arrays

® (: Static or dynamic arrays; direct memory, pointer arithmetic.

int arr[10]; // Static array

® Java: Array objects; dynamic using ArrayList.
int[] arr =new int[10];

ArrayList<Integer> list = new ArrayList<>();

® Python: Lists; dynamic and resizable.

arr=[1,2,3,4,5]

IJMRSET © 2025 | AnISO 9001:2008 Certified Journal | 13907

©2025 IJMRSET | Volume 8, Issue 10, October 2025| DOI:10.15680/IJMRSET.2025.0810003

INNUNHYELYEVPARE | www.ijmrset.com | Impact Factor: 8.206] ESTD Year: 2018|

International Journal of Multidisciplinary Research in
Science, Engineering and Technology (IJMRSET)

: A s
P
IIMBSET (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)
|
Linked Lists

® (C: Manual node and pointer management.

struct Node { int data; struct Node* next; };
® Java: LinkedList class; OOP style.

LinkedList<Integer> list = new LinkedList<>();

® Python: Manual implementation or third-party libraries.
class Node:
det” it (self, data):
self.data = data

selfinext = None

Stacks and Queues
® (C: Built with arrays or linked lists; manual push/pop.
® Java: Stack and Queue interfaces; easy use.

® Python: List as stack, collections.deque for queue.

Trees and Hash Tables
® (C: Pointers and structs for custom trees; hash tables usually manual or via libraries.
® Java: TreeMap, HashMap, and third-party libraries.

® Python: Dictionary for hash tables, easy custom trees via classes.
1. ALGORITHMIC EFFICIENCY

Sorting and Searching

C:

Sorting: gsort (O(n log n)), manual quicksort/mergesort.

Searching: Manual binary search (O(log n)), linear search (O(n)).

Java:

Arrays.sort, Collections.sort; optimized mergesort/quicksort.

Search: Binary search in Collections, HashMap O(1) lookup.

Python:

sorted() uses Timsort (O(n log n)), list.index for search (O(n)), dictionary/set lookup for O(1).

O ® OO ® OO e

Big-O Complexities (Examples)

Algorithm C Java Python
Linear Search O(n) O(n) O(n)
Binary Search O(logn) O(logn) O(logn)
Hash Lookup o(1) O(1) HashMap O(1) dict
Quick Sort O(n logn) O(n logn) O(n logn)

IJMRSET © 2025 | AnISO 9001:2008 Certified Journal | 13908

©2025 IJMRSET | Volume 8, Issue 10, October 2025| DOI:10.15680/IJMRSET.2025.0810003

INNUNHYELYEVPARE | www.ijmrset.com | Impact Factor: 8.206] ESTD Year: 2018|

International Journal of Multidisciplinary Research in
Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

L ___|
Use Case Scenarios
® (: Systems programming, device drivers, embedded systems—when speed and control matter most.
® Java: Enterprise applications, Android apps, web backends—strong OOP and scalability.

® Python: Data science, scripting, machine learning—ease, rapid iteration, rich library support.

Industry Adoption
® (C remains dominant in firmware, kernel, and high-performance computing.
® Java is standard for cross-platform desktop and backend server work.

® Python is exploding in popularity for data-related work, automation, and rapid prototyping.

Sample Table: Structural Comparison

Structure C Java Python

Array Manual size, static/dynamic Array/ArrayList List, dynamic
LinkedList Manual, pointer-based LinkedList class Manual/third-party
Stack Manual implementation Stack/Deque classes List, deque

Queue Manual implementation Queue/Deque interfaces deque, queue module
HashTable Manual, or via libraries HashMap, Hashtable Dictionary

Practical Advantages and Limitations

C Strengths: Unparalleled speed, fine memory control.

Java Strengths: Safety, scalability, easy-to-use libraries.

Python Strengths: Concise, excellent for beginners, huge ecosystem.
C Weaknesses: Hard to debug, longer code, dangerous memory bugs.

Java Weaknesses: Sometimes verbose, slower than C.

Python Weaknesses: Not for low-level performance, less deterministic memory usage.

IV. SAMPLE CODE COMPARISON

® Stack Pushin C:

stack[++top] = value;

® Java Stack Push:

stack.push(value);

® Python Stack Push:

stack.append(value)

IJMRSET © 2025 | AnISO 9001:2008 Certified Journal | 13909

©2025 IJMRSET | Volume 8, Issue 10, October 2025| DOI:10.15680/IJMRSET.2025.0810003

INNUNHYELYEVPARE | www.ijmrset.com | Impact Factor: 8.206] ESTD Year: 2018|

= - b . * g * * *
-48‘;;3«:’}» International Journal of Multidisciplinary Research in
P 3! L) . . . S
Sk W- Science, Engineering and Technology (IJMRSET)
IIMBSET (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

.|
Result

Ease of Implementation Across Languages

Python

52.6%

15.8%

31.6%

Java

Here’s the pie chart showing Ease of Implementation across C, Java, and Python.
e (:3/10 — smallest slice (most complex to implement)

e Java: 6/10 — mediumslice

e Python: 10/10 — largest slice (easiest to implement)

V. CONCLUSION

This comparative analysis of data structures and algorithms in C, Java, and Python highlights the unique strengths and
trade-offs of each language. C offers unparalleled control and efficiency, making it ideal for performance-critical and
system-level programming, although it demands careful manual memory management and low-level coding expertise.
Java balances performance with usability by providing a robust object-oriented framework, automatic memory
management, and extensive built-in data structures, which suits enterprise-scale and cross-platform development.
Python excels in simplicity and rapid development, offering versatile high-level data structures and vast library support,
mainly favored in data science, scripting, and prototyping, despite its slower execution speed.

The choice among these languages depends on project requirements balancing speed, memory control, ease of use, and
development speed. While algorithms maintain their theoretical complexity across languages, implementation
convenience and ecosystem support significantly influence productivity and code maintainability. Understanding these
subtle differences empowers developers and students to select the appropriate language and data structure paradigm
tailored to their specific tasks.

This exploration underscores the importance of foundational data structures and algorithms knowledge combined with
awareness of programming language characteristics to build efficient, scalable, and maintainable software solutions.

REFERENCES

Kernighan, B. W., Ritchie, D. M. (1988). The C Programming Language, Prentice Hall.

Oracle. Java Platform Documentation. https://docs.oracle.com/javase

Python Software Foundation. https://docs.python.org/3

Goodrich, M. T., Tamassia, R., Goldwasser, M. H. (2014). Data Structures and Algorithms in Java, Wiley
Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2009). Introduction to Algorithms, MIT Press

Rl

IJMRSET © 2025 | AnISO 9001:2008 Certified Journal | 13910

https://docs.oracle.com/javase
https://docs.python.org/3

- =, &8
L g3

P

3 INTERNATIONAL
A ‘ ‘ STANDARD
SJIF Scleatific Journal lmpact Factor ‘ \ SERLAL
NUMBER
INDIA

INTERNATIONAL JOURNAL OF

MULTIDISCIPLINARY RESEARCH
IN SCIENCE, ENGINEERING AND TECHNOLOGY

NISCAIR

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |

www.ijmrset.com

mailto:ijmrset@gmail.com
http://www.ijmrset.com/

	ABSTRACT: Data structures and algorithms are the foundation of effective software engineering. While C, Java, and Python are all widely used, they offer distinct approaches due to their language philosophies, syntax, and core features. This article ex...
	I. INTRODUCTION
	Language Overview
	III. ALGORITHMIC EFFICIENCY
	Big-O Complexities (Examples)
	Industry Adoption
	Sample Table: Structural Comparison
	IV. SAMPLE CODE COMPARISON
	Result
	V. CONCLUSION
	REFERENCES

